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¢ \Walking Techinicolor could be realized just below the conformal window

e crucial information: Nt & mass anomalous dimension around Nic"'t
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SU@B) + Ni=12  [fundamental]




Hadron spectrum:
Mt-response In mass deformed theory

¢ |R conformal phase:

e coupling runs below p=ms. like ni=0 QCD with Aqcp~ms

* multi particle / glueball state : My « mi/(+Y): Frp o m¢/(1+Y,,)

e S x SB phase:
e ChPT (but, large Ns, small F < real QCD)

e hard to get to the chiral regime

* at leading: M«® « mys, ; Fn=F + cmx

e so far no chiral logs are observed — polynomial in m;




Simulation

e Ni=12 HISQ (Highly Improved Staggered Quarks)

e tree level Symanzik gauge

e B=6/9%=3.7, V=L3xT: L/T=3/4; =18, 24,30, 0.04=m:=0.2
e =6/g°=4.0, V=L°xT: L/T=3/4;L=18, 24,30, 0.05=m:=0.24

e Ni=4 HISQ for the reference of S x SB for comparison

e using MILC code v7 with some modifications




staggered flavor symmetry for Ni=12 HISQ

e comparing mesonic mass with local PS and V operators for f=3.7
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a crude analysis: Mp/Mn vs Mr

Ni=12: HISQ

e one can attempt to perform a
matching

e a(f=3.7) > a(B=4.0)

e movement: correct direction
iIn asymptotically free
domain !
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e mass dependence at the tail is due to non-universal mass correction to HS




conformal (finite size) scaling

e Scaling dimension at IR fixed point [Wilson-Fisher]; Hyper Scaling [Miransky]
¢ mass dependence is described by anomalous dimensions at IRFP

e gquark mass anomalous dimension 7*

e operator anomalous dimension

® meson mass and pion decay constant obey same scaling

1 1
My = cmm}“ fr = c]:rTrL}JW

e finite size scaling in a L* box (DeGrand; Del Debbio et al)
1

e scaling variable: T = Lm}Jﬂ

Lf,=F(x)
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Ni=4 see If data align at some y
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Nr=12 see if data align at some y
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without resorting to a model

e Yy of optimal alignment will minimize:

j_ (K)
P NS«YE ()]

2
K j¢K 5 gp

* &p=LMp for p=m, p; &r=LFn

e fp(x): interpolation .... linear

* (quadratic for a systematic error)

.-+ range 1
— — range 2
range 3

e if € is away from f(x;) by d € as average—P="1

e optimal y from the minimum of P

1
0.

e systematic error due to small L, large m estimated by examining the x and L
range dependence
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summary of y obtained by minimizing

M_ (B=3.7)

MJ‘I: (6240) -

F_(B=3.7)

E_ (B=4.0)
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Y

e consistent y by 1.5 o level except for Fr at f=4.0
e remember: Fr at B=4.0 speculated to be out of the scaling region

e universal low energy behavior: good with 0.4<y+<0.5




Conformal type fit with finite volume correction

{=LM,, LF., LM, v a  x2/dot

0.455(3)
£ =cy+ cle}/(lﬂ) .. -fit a,

f = Cop + Cle}/(l—Fw + Cng? .- -fit b. ' 0.431(8) .
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e simultaneous fit it with a leading mass dependent correction is not bad
e b-1: Ladder Schwinger-Dyson, b-2: (am)? lattice artifact

® resulting Y is consistent with the model independent analysis




2T fit (after infinite volume extrapolation)
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e wide range fit ends up co<0
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e consistent with co=0 for small mass range 0] 1.537(29) 20.76(53) -38.2(2.3)  2.59




PT fit (after infinite volume extrapolation)

I | I
— fit 1 [0.04,0.08] o o L Cimr 4 comn
fit 1 [0.04,0.1] & 0 LIvf 2100y
__~ fit 1[0.04,0.12]
—~ fit2[0.04,0.16]

Co + Cimy + Cgm? + c;;m:;’c T

fit range c1 Co C3

0 1.640(31) 16.68(47)

fit1: | -0.0232(50) 2.46(16) 9.9(1.1) 1.75

0]  1.754(21) 14.73(25) 8.54

fit 1: [0.04,0.12]|-0.0174(31) 2.27(85) 11.32(52) 1.93

0]  1.801(16) 14.09(16) - 9.36

e wide range fit ends up co<0
fit 2 : [0.04,0.16][-0.0044(61) 1.69(22) 19.1(2.4) -32.9(7.6) 3.28

e consistent with co=0 for small mass range 0] 1.557(29) 20.76(53) -38.2(2:3)  2.59

e But: Myy/(4nF)~2 at lightest point — difficult to tell real chiral behavior




Summary:
SU(3) gauge theory with Ni=12 fundamental fermion simulation with HISQ

e =3.7, 4.0: consistent with being in the asymptotically free regime
e Mn, Frn, Mp: consistent with the finite size hyper scaling for conformal theory

¢ resulting Y* from different quantities, lattice spacings are consistent except

e F at B=4.0 (ms likely too heavy for universal mass dep. to dominate)

e need careful continuum scaling needed to get more accurate than 0.4<y*<0.5
e real / remnant (approximate) conformal property is definitely there

e could not exclude S x SB with very small breaking scale
e even if S x SB, ym too small for walking theory of phenomenological interest

e Ni=8 theory is interesting & under investigation with same lattice set up




Thank you for your attention




PT inspired infinite volume limit (f=3.7)

e ChPT type finite volume effect — chiral fit results not inconsistent with S x SB




HISQ action

e proposed by HPQCD collaboration for

e smaller taste violation than other approaches

¢ pbetter handling of heavy quarks

® being used in simulations

e MILC: Nf=2+1+1 QCD
e HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat’10 proceedings)
e HISQ/tree is best of [HISQ/tree, Asqgtad, stout]

for flavor (taste) symmetry, dispersion relation




HISQ action
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® being used in simulations
Figure 2: RMS pion mass when my, = 140 MeV.
e MILC: Nf=2+1+1 QCD See details in the text.
e HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat’10 proceedings)
e HISQ/tree is best of [HISQ/tree, Asqgtad, stout]

for flavor (taste) symmetry, dispersion relation




LHC (Large Hadron Collider)

® excess @ ~125 GeV
e 1 0 level (look elsewhere)
e [arger when ATLAS & CMS results are combined ?
e Mw=MzcosOw=gFw/2 (Fr=vVweak=246 GeV)
e Mny~500 GeV: problem ?
e even if scalar is fund at ~125 GeV
e possible techni-dilaton (Matsuzaki-Yamawaki,,)
* O++ glueball tends to be much lighter than techni-hadrons
e Cf. SU(2) lattice work by Del Debbio et al

e important to investigate glueball for SU(3) as well !!!




